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Abstract. Employing a high-precision band structure method (FP LAPW—full potential
linearized augmented plane wave) we calculate the total energy variation along the tetragonal
distortion path connecting the body centred cubic (bcc) and the face centred cubic (fcc) structures.
The total energy along this Bain transformation is calculated, varyingand volume, providing

a first-principles energy surface which has two minima as a functianiaf These are shallow

and occur for the sp metals at the two cubic structures, while Ti (V) has a minimum at fcc
(bce) but a saddle point (i.e. @ minimum in volume and a maximum with respectafoat

the other cubic structure. These features can be analysed in terms of an interplay between the
Madelung contribution and the band energies. Our total energy results allow us to calculate the
elastic constant€'11 andC12 and to study the influence of pressure on the phase stability. These
energy surfaces will be used in part Il of this paper to investigate finite-temperature effects by
mapping them to a Landau—Ginzburg expansion.

1. Introduction

Martensitic phase transitions (MPTs) have interested scientists for more than a century
leading to an enormous amount of literature, which we do not attempt to summarize here,
but we notice that many open questions remain. Although metallurgists have developed
a large number of technologically important applications (e.g. shape memory alloys) and
know well how to make use of MPTSs, the theoretical and fundamental understanding of this
phenomenon is still far from being complete. In contrast to diffusive phase transitions an
MPT is a collective phenomenon where a crystal undergoes a first-order transition from an
austenitic (high-temperature) modification to a martensitic (low-temperature) structure with
a hysteretic behaviour typical for this phase transition. The width of the hystex&@sishe
discontinuity in the specific heat at constant presshi€g,, and the volume changaV/V

are found to be characteristic quantities to distinguish between various types of martensite.
Around the MPT one usually observes a softening of some elastic constants together with
a large elastic anisotropy. In some systems martensitic precursor effects appear as local
distortions leading to the well known ‘tweed structures’.

The development of theoretical models for the MPT was pioneered by Cochran [1] and
Anderson [2] who independently formulated the soft-mode model according to which the
effective frequency of one phonon branch becomes zero at a tempefaturiggering the
phase transition, but only very few systems show this behaviour [3,4]. Krumhansl and
Gooding [5] proposed a model based on anharmonicities in the order parameter (see part Il
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Figure 1. A representation of the fcc and bcc lattices assuming a bct (body centred tetragonal)
cell which allows a continuous (Bain) transformation between them.

[6] of this paper) while Vul and Harmon [7] discussed a fluctuationless mechanism where
the MPT is triggered by defects in the crystal structure. A fairly complete overview on
martensitic phenomena can be found in [8].

If a crystal undergoes a transition from one structure into another, individual atoms in
the unit cell or complete atomic planes in the whole crystal must move to new positions
in an orderly fashion. Out of the multitude of possible geometries for such a transition
between the body centred cubic (bcc) and the face centred cubic (fcc) crystal structure the
Bain transformation is by far the simplest. It has been known since 1924 wi@ Bain [9]
described the MPT by a continuous displacement of one or more atoms per unit cell. From
his work on quenched steel he found an orientational relationship between the austenitic and
the martensitic phase, namely that the [001] plane of both the bcc and fcc structure remains
unchanged during the transition. Bain described this transition between the bcc and fcc
structure via a tetragonal distortion shown in figure 1. Both the fcc and bcc lattice can be
described as special case of a body centred tetragonal (bct) unit cell. In the fac @ade
b are equal and the lattice veciohas the lengtla+/2 while in the bce case all three lattice
vectors have equal lengthl. The Bain transformation between the fcc and the bcc lattice is
thus described by the continuous change of a single variable, namedydlratio, so that
c/a = /2 refers to the fcc and/a = 1 to the bece structure. It should be noted that this
Bain transformation is just one of 24 possible paths (given the existence of a habit plane)
between these two structures and that other, usually more complicated, transformations can
occur and have been found experimentally.

We have made a systematic investigation of the $ecbcc transition along the Bain
path which is sufficiently simple to make computations feasible but should lead to a basic
understanding of MPT. This study is undertaken for the simple metals Li, K, Rb, Ca and
Sr and for the early transition elements Ti and V. In our study of the alkalines we omitted
Na, since already several theoretical investigations are available (see e.g. [10], [11] and
references therein). In this paper we describe the band structure results which are valid
at T = 0 K but can be mapped to a Landau expansion and thus provide a basis for a
finite-temperature (mean field) study which is contained in part Il [6].

2. Computational details

We use quantum mechanical calculations to obtain the total ener@y=atO on a first-
principles basis. We compute the electronic band structure within the density functional
theory and the local density approximation (LDA) by means of the full-potential linearized-
augmented-plane-wave (FP LAPW) method employing the WIEN95 code developed by
Blaha et al [12]. Exchange and correlation effects are treated by LDA using the
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parametrization by Hedin and Lundgvist [13]. It will be shown below that for some systems
the energy differences are only fractions of 1 mRyd, and therefore the calculations were
carried out for a sufficiently large number &tpoints in the irreducible wedge of the
bct Brillouin zone (between 540 and 18@Bpoints, depending on the system). KAgrid
that is about uniform for/a = 1.2 was kept fixed throughout the calculations in order
to avoid discontinuities in the total energy that could be caused if the number of grid
points were changed discontinuously as a function of cell dimensions. Furthermore very
high precision in the total energy results is necessary and was achieved by using a plane-
wave cut-off RKmax = 9 (for definitions see [12]) leading to about 140 (plane-wave) basis
functions. Inside the atomic spheres the potential and charge density are expanded in crystal
harmonics up tal. = 6; in the interstitial region a Fourier series with 150 starskofis
used. In each self-consistency cycle the core states are treated fully relativistically and
the Hamiltonian for the valence (and semicore) states is calculated in a scalar relativistic
version (without spin—orbit corrections). The total energy Tat= 0) is computed as a
function of volumeV andc/a (Bain variable), the two most important parameters. For
each of the seven systems we performed calculations for about eight different volumes
and 10 differentc/a ratios. From this series of self-consistent FP LAPW calculations we
derive total energy surfaces(V, c/a) in the volume—Bain variable space. In contrast to
earlier investigations [10, 14] which concentrated on ¢lie variation of the total energy,
we included the volume as another crucial parameter for the thermodynamic phase stability.
It will be shown (subsection 3.4) that the volume change calculatefl at 0 K can be
related to the slope in th@, T phase diagram. We would like to mention that this part
of our work is similar to previous investigations by Chenal [15] for the hcp<« bcc
transition in barium and the reader should be aware that other quantum mechanical models
have been applied to this problem by various authors [14-17].

By fitting the FP LAPW total energies to a polynomial, we obtain an analytic expression
for the energy surfac& (c/a, V) given by

Ec/a, V)= > Y Ay(c/a)Vi. )
i=0,n j=0,m

To monitor the convergence of the fit we performed a least-squares procedure using
orthogonal Chebychev polynomials from which the polynomial acc. to (1) was derived.
The fit coefficientsA;; for all metals studied are given in the appendix.

The analytic expression for the total energy (1) allows us to calculate several
characteristic quantities such as the bulk modulus

B =V3®E(c/a, V)/3V? = (Cr1+2C12) /3 ¢/a constant 2)
or the tetragonal shear constant
C' = (1/V)d?E(c/a, V)/d(c/a)* = (C11+ C12) /2 V constant  (3)

The definitions of the elastic constariis; andCy; are self-evident and it is straightforward

to calculate the equilibrium values of volumé and Bain variablec/a. Formally the
expansion given in (1) is equivalent to the one for the soft-mode model proposed by Clapp
[3] who explains the occurrence of MPTs by nucleation due to local strains.

3. Total energy surfaces as a function ot/a and V

In the following section we present the result of our band structure calculations and show
for each system investigated the total energy surface. In the present study we find either
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Figure 2. Madelung constant,, as a function of:/a for a bct lattice.

fcc or bece as the most stable modification which is associated with a local energy minimum
with respect toV andc/a. However, this does not need to be the absolute minimum, since
other phases, which might lead to an even lower total energy, are not investigated. At first
it seems surprising that (for each volume) the energy appears to be an extremum (either
minimum or maximum) at the ‘cubic’ values af/a (i.e. c/a = 1 for bec, c/a = /2

for fcc). This extremal condition is in fact a general feature of cubic systems and can be
derived from the elastic energy assuming the volume remains constant [18]. Therefore this
observation suggests that the lattice geometry plays an important role. If one varig¢s the
ratio for a tetragonal unit cell as shown in figure 1 the number of next-nearest neighbours
becomes a relative maximum feya = 1 (bcc; 8 n.n.) and an absolute maximum for
c/a = /2 (fcc; 12 n.n.) while for all other values ofa the number of n.n. is below eight.

It has been shown that the total energy can be decomposed into terms which depend
only on volume, and two contributions, namely the band energy (the sum over the occupied
states) and the electrostatic Ewald energy, which depend oo/theatio [19]. Therefore
the latter two terms govern the total energy for constant volume. The electrostatic Ewald
energyEg, Iis given by

Epw = (18— an)(q?/ Q%)% s/ Rws 4

where Qys and Q7 are the volume of the Wigner—Seitz and the muffin-tin sphere,
respectively;Ry s is the Wigner—Seitz radius angis the charge inside the Wigner—Seitz
sphere (equal to the nuclear charge for monoatomic systems) minus the charge inside the
(smaller) non-overlapping muffin-tin sphere. For metallic systems the variatiafizf
along the Bain path is governed by tha: dependence afy,, sinceQ?,¢/Rys is constant
for fixed volume andy/ 2y is nearly constant for slowly varying electron densities. In
fact for vanadium evemg varies little, between 1.432 and 1.462 electrons in the range of
0.8 <c/a < 1.6.

The functiona,, (c/a) shows (figure 2) a double-well structure with two minima, one
atc/a = 1 (bcc) and the other a2 (fcc). This behaviour is due to the self-reciprocity
of the bcc and fcc structure as discussed in the earlier literature [20]c¢/mox 0.9 and
c¢/a > 1.7, the Ewald energy rises sharply, since electrostatics makes such highly distorted
bct lattices very unfavourable. It should be noted, however, that in ionic systems, gvhere
is no longer nearly constankg,, can (in contrast to metals) deviate substantially from the
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double-well behaviour of,,. For example, it has been shown [21] that in Csl the pressure
induced tetragonal distortion is due to the electrostatic contribution to the total energy.

The band energy (sum over all occupied states) can (to a good approximation) be reduced
to the contribution from the valence electrons, since the core energies do not change for
constant volume. The band energy is given by

Ep = / eN(e)de )
€0

wheregg denotes the bottom of the valence bangd,is the Fermi energy, ant¥ (¢) is the

density of states of the valence electrons. For our metallic sysEymontains the essential

information on bonding and thus determines the equilibrium geometry of the lattice. This

energy decomposition will be used (subsection 3.8) to analyze the total energy of titanium

and vanadium.

Below we present thd = 0 K results of our band structure calculations for each
system and discuss the related properties. For some cases we decompose the total energy
into Eg,, and Eg in order to illustrate the well known different bonding mechanism for
simple (sp-band systems) and transition metals (d-band systems). Unless stated differently
our results are compared to the experimental phase diagrams taken from the book by Young
[22].

3.1. Lithium

The total energy surface of Li (figure 3) shows that at the equilibrium volume the close-
packed (fcc) structure is favoured over the bcc modification, although for the latter a local
minimum occurs at/a = 1. Experimentally the structure & = O is found to be close
packed, but in a hexagonal polytype (hcp or 9R [23]). It was confirmed by a previous
investigation [24] using the same band structure code [12] that the hcp structure gyith a
ratio slightly deviating from the ideal value qf(8/3)) is even more stable than the fcc. At

the equilibrium volume the energy difference between the bcc and the fce structure is about
0.16 mRyd. Under external pressuPethis energy difference is increased in favour of the

fce structure (figure 4). The experimental phase diagram also shows that the stability range
of the fcc structure is increased under pressure, which means that the critical temperature
for the phase transition from fcc to bcc increases tgo/(" is positive). This observation
implies that the temperature at which the MPT appears is related t@ theO K energy
difference between the martensitic and the austenitic phase. A careful examination of the
E(c/a) curves (figure 4) shows that the metastable minimuryat= 1 (for P = 0) shifts

under pressure to smaller valuescghi and a local maximum appears@ta = 1. For Li

this feature occurs only under pressure but it is common for the transition metal systems
(see subsection 3.8). This observation implies that under pressure the 2p states are lowered
in energy and thus form s,p hybrid bands which favour directional bonds comparable to
the early transition metals investigated. From this analogy between Li and the transition
metals, and the fact that this behaviour is not found for the heavier alkaline metals, where
the energy difference between the s and p states is too large for an effective hybridization,
we conclude that the formation of directional bonds is responsible for the local minimum
at ac/a ratio smaller than unity.

It should be noted that earlier band structure investigations based on the ASA (atomic
sphere approximation) assuming a spherically symmetric potential, e.g. within the LMTO
(linear muffin-tin orbital) method, found the bcc structure as ground state [25, 26], while FP
LAPW calculations [27] predict fcc lower than bcc and find hcp as the ground state [24] in
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Figure 3. Total energy contours of Li, K, and Rb as a functioncgfs and volume per atom.
The labels on the contour lines are in multiples of 0.025 mRyd.

bee fee

0.6

Li
04
03 F
02+
01 |
0 1.2 1.4

energy (mRy/atom)

0.0
0.8 1.

1.6
c/aratio

Figure 4. The energy variation of Li as a function ofa for the equilibrium volume (108 bofy
full circles) and under pressure of 2 GPd & 95 bohP; open circles). The two curves are
shifted arbitrarily.

agreement with pseudopotential calculations (without the ASA [28, 29]).
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3.2. Potassium

The energy surface of K (figure 3) shows two minima at = 1 andc/a = +/2 with the fcc
structure being slightly more stable by about 0.02 mRyd. This result has also been obtained
by an independent APW [11] and a high-precision FP LAPW calculation [30], while other
theoretical investigations [26, 29, 31] obtained a bcc ground state. The experimental situation
is not completely clear but there is some evidence for a lattice distortion at low temperature
[32, 33] and there are indications that the fcc structure becomes more stable under pressure.

3.3. Rubidium

We find fcc as ground state (figure 3) and a very shallow minimuryat= 1 which is

about 0.17 mRyd above the fcc modification. Experimentally Rb is bcc at room temperature
and there is a pressure induced phase transition to the fcc structure. The low-temperature
phase diagram has not yet been completely resolved but there is again evidence for an
instability of the bcc phase at low temperature [34]. This result is supported by the slope of
the bcc/fcc phase boundary in tike T diagram. Our calculation shows that under pressure
the fcc modification becomes progressively more stable with respect to the bcc structure
(a similar behaviour as in Li) and this is in agreement with the phase diagram, according
to which for pressures larger than9 GPa the fcc structure is stable up to the melting
temperature. In contrast to our result, @minitio pseudopotential investigation [35] found

bcc more stable than fcc and a transition to fcc at about 5.2 GPa. The very low value of
the shear constardt’ (table 1), the lowest of the whole periodic table, makes the Rb lattice
very unstable against a tetragonal distortion.

Table 1. Calculated and experimental (in brackets) elastic data for Li, K, and Rb. A comparison
with experiment is only possible for the low-temperature structure; experimental data are taken
from [49] for the structure specified. The volume is given as volume per atom.

B (GPa) C' (GPa) C11(GPa) C12 (GPa) V. (bohP)

Lifcc 152 (12.0) 1.3(1.1) 16.9(13.4) 14.3(11.2) 127.7 (141.8)

Libcc 154 1.2 17 14.7 128.1
K fcc 5.2 0.4 5.7 5.0 430.4
Kbce  54(34) 06(0.3) 6.1(3.7) 49(32) 428.7 (481.8)
Rbfcc 4.2 0.3 46 4.0 518.9

Rbbcc 4.1(26) 03(03) 45(3.0) 38(24) 519.6 (588.4)

3.4. Alkaline metals

According to our calculations all three simple metals Li, K and Rb behave similarly since
at zero pressure the fcc structure is more stable than the bcc modification. The elastic
constants are given in table 1. Since the total energy of these three metals has two minima
(a stable and a metastable one) we calcukt€e’, C1; andCq, for both cubic structures. A
comparison with experiment, however, can only be made for the stable (low-temperature)
phase. Table 1 demonstrates that all equilibrium quantities are in fair agreement with
experiment. The bulk modulus is systematically overestimated and the equilibrium volume
is about 10-15% smaller than experiment, deviations typical within LDA calculations.
Although it has been shown for Na [36] that for small changes in volume the barrier
height separating the two phases remains fairly constant, this picture alters for larger
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pressure. The fcc stability increases for Li and Rb, while for K the opposite behaviour

is found. In the former case there is a positive slope of the phase boundary i the

phase diagram between the low-temperature (fcc) and the high-temperature (bcc) phase but
in the latter case (of K) the fcc phase becomes less stable under pressure and the slope of
the phase boundary is negative. This effect can be understood from Gibbs’ phase rule for
a one-component system, where the Clausius—Clapeyron equation defines the slope of the
phase boundary:

dPr/dT = AS/AV = (Spee — Stee) [ (Voee = Vee)- (6)

In an entropy driven phase transition the entropy of the high-temperature phase&yhere
must be larger than that of the lower-temperature phase @jerein order to lower the

free energy at high temperatures. Therefore in the presentAadsaust be positive and
consequently the volume difference determines the sign of the slope [37]. By taking the
respective values from table 1 we findPg/dT to be positive for Li and Rb but negative

for K, in complete agreement with the experimental phase diagrams. It should be noted that
this analysis holds for Na too (table 3 of [11]) where LAPW calculations predict a negative
AV leading to a negative ®-/dT in accord with experiment.

These macroscopic (thermodynamic) results discussed above must have a microscopic
origin. When one compares the electronic band structure of the four alkaline metals [11]
one notices that for Li and Rb the Fermi enekgyis located in a peak of the density of
states caused by a flat band at the surface of the first Brillouin zone, but this is not the
case for K and Na. According to Jones [38] a structural instability occurs if the Fermi
surface touches the Brillouin zone. Under pressure, the band width is increased and states
which were unoccupied at the equilibrium volume are lowered in energy and thus become
occupied, leading to a lowering ef-, and consequentlyr moves away from the ‘unstable’
peak position, increasing the fcc stability.

3.5. Calcium

Ca is a group Il element and its ground state is fcc. Our calculation correctly predicts this
ground state (figure 5) but shows a very shallow minimuna/at= 1. At a pressure of
about 19.5 GPa there is a transition into the bcc structure [39] which has been reproduced by
Wentzcovitch and Krakauer using FP LAPW calculations [17]. They studied an interesting
alternative path with respect to the Bain transformation and assumed a mechanism derived
from Burgers’ suggestion [40] for the hep bcc transformation. Since there exists a simple
(but approximate) geometrical relationship between Bain’s and Burgers’ transformations, it
is not surprising that the two paths hardly differ in total energy. In figure 6 we show the
¢/a dependence of the total energy at different volumes (pressures). It can be clearly seen
that the fcc minimum disappears and (4t ~ 150 au) the system undergoes a pressure
induced discontinuous phase transition to the bcc structure. Our results are in agreement
with both the calculations mentioned above [17] and the experimental results cited therein.
The slope of the phase boundary derived from (6) agrees in sign with experiment.

The critical pressure found for the fee bcc transition is about 20 GPa and is calculated
directly from the total energy surface. It should however be noted that the critical pressure
for the phase transition can no longer be calculated from the voluigeand V; and the
fcc bulk modulusB, since the harmonic approximation assumed in the calculatiah od
longer holds for a volume rati¥’y/V,, =~ 0.6.



fcc—bcc structural transition | 807

volume per atom (bohr?)

c/a ratio

Figure 5. Total energy contours of Ca and Sr as a functior af and volume per atom. The
labels on the contour lines are in multiples of 0.1 mRyd.
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Figure 6. The energy variation of Ca as a functionegt: for three volumesyV,, = 2569 bohP

(full circles), V = 210 boh? (open circles), and’ = 150 boh? (triangles). The three curves
are shifted arbitrarily.

3.6. Strontium

According to the available experimental data, our calculation incorrectly predicts bcc as
ground state (figure 5) but the energy difference between the bcc and fcc modification is
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Figure 7. The energy variation of Sr as a function @fa for volumes: V,, = 324 boh? (full
circles), V. = 360 boh? (diamonds),V = 290 boh? (triangles), andV = 210 boh? (open
circles). The four curves are shifted arbitrarily.

below 0.05 mRyd €7.5 K) in favour of bcc. We even tried to improve the basis set of
our band structure calculation and performed additional band calculations for Sr where we
treated the low-lying 3p (semicore) states by local orbitals [41], a procedure that guarantees
a proper orthogonalization of the valence states to the lower-lying semicore states. However,
this new set of calculations did not change the original result. Experimentally the ground
state at room temperature is found to be fcc but the bcc structure must be very close since
already 3.5 GPa are enough to drive Sr to the bcc phase. If we assume that our fcc minimum
would be the ground state, we find a pressure induced transition to the bcc state at about
4 GPa (figure 7), which means that regardless of the actual ground state (bcc or fcc) the
energy barrier is described properly. Earlier LMTO calculations gave essentially the same
results [42].

3.7. Summary of the simple metal results

The equilibrium data for Ca and Sr are summarized in table 2 which shows that our results
are as close to experimental values as one can expect within the LDA. All five simple
metals investigated have the same characteristic double-well structure where both bcc and
fcc modifications are found to be at a (relative) minimum of the total energy. The mutual
stabilization energies are small, which suggests that the major contribution to the stability
stems from the electrostatic Ewald enerfy,, as discussed above. A decomposition of

the total energy intcE g, and the band energi (5) shows thatE varies much less as

a function ofc/a than Eg,, since the valence electrons behave as an ‘electron gas’ and
thus depend more on volume than on changes of the crystal structure. Consequently the
stabilization energies are expected to be small, in contrast to those of transition metals,
which will be discussed below.

3.8. Titanium and vanadium

Ti exhibits a complex phase diagram with an hcp ground state followed at 1155 K by the
bcce structure which remains up to the melting temperature at 1943 K. Under pressure (and
below 900 K) experiment finds a transition from hcp to the hexagenphase. A recent
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Table 2. Calculated and experimental (in brackets) elastic data for Ca and Sr. A comparison
with experiment is only possible for the low-temperature structure; experimental data are taken
from [49]. The volume is given as volume per atom.

B (GPa)  C'(GPa) Ci1(GPa) Ci2(GPa) Vegus (bohP)

Cafcc 19.2 (18.3) 2.9(2.8) 23.1(23.1) 17.2(16.0) 256.9 (294.7)

Cabcc 201 2.7 23.7 18.3 253.9
Srfcc  165(12.0) 1.8(25) 18.9(15.3) 15.3(10.3) 324.0 (380.5)
Srbcc  16.0 35 20.6 13.6 319.6
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Figure 8. Total energy contours of Ti as a function ofa and volume per atom. The energy
difference between adjacent contour lines is 0.25 mRyd. The bottom panel shows a section of
the energy surface aft.;.

band structure investigation [43] predicts a further transition to the bcc structure at a pressure
of 57 GPa. Ti does not exist in the fcc phase but since the hcp and the fcc structure are very
similar (same nearest-neighbour coordination) we expect that the hcp phase is only slightly
lower than the fcc modification. We find fcc already lower in energy than bcc (figure 8)
but there is a qualitative difference from the simple metals, because the bcc modification
(c/a = 1) now appears at a saddle point (a minimum with respedt tbut a maximum
with respect toc/a). The energy difference between the fcc and the bcc state is about
3 mRyd which is considerably larger than for the simple metals discussed above. We find
an additional metastable minimumatz ~ 0.85 apparent from the bottom panel of figure 8
which represents a section through the energy surface takép.athis peculiar behaviour
requires an explanation, which is attempted below.

The ground state of vanadium (figure 9) is found to be how (= 1) in agreement
with experiment. The fcc phase corresponds to a saddle pointaat /2 at an energy
about 20 mRyd above the bcc ground state followed by a metastable minimum at a large
bct distortion (withc/a = 1.8). The section through the energy surface for constant
volume V,,,;; (the bottom panel of figure 9) shows that the maximum (saddle point) and
the minimum position are interchanged between V and Ti, but both appear at thegubic
values.



810 V L Sliwko et al

=

S

=

£

2

o3

)

2.

(]

&

ol

S

>

& 20

£ -

Z 10 + bee fcc

g 9 4 ; U .

o 08 1.0 1.2 1.4 1.6 1.8
¢/a ratio

Figure 9. Total energy contours of V as a function ofa and volume per atom. The energy
difference between adjacent contour lines is 1.0 mRyd. The bottom panel shows a section of
the energy surface &

Both systems have the following characteristics in common that distinguish them from
the simple metals. The equilibrium modification must and does lie in an absolute minimum
of the total energy but there is always a second metastable minimum with a rather large
tetragonal distortion at a/a ratio of about 0.85 and 1.8, respectively. Although a similar
behaviour has been found for the series of the 4d elements [14], as well as for bcc Fe
[16], Co [44], and Mn [45] these features have not yet been explained and thus require an
interpretation.

As discussed above (see the beginning of section 3) the total energy at constant volume
contains two major contributions, namely the band endtgyand the electrostatic Ewald
energy Eg,,. In order to determine which of them dominates the structural stability, we
show these two contributions in figure 10 (note the different energy scale for Ti and V). Let
us first discuss V for which the band energy (circles) has a maximuyaat /2, while
the electrostatic Ewald energy (triangles) shows a double-well structure with minima for
bcc and fcc (cf figure 2). Adding the band energy to the Ewald energy yields the structural
energy which agrees well with the FP LAPW total energy (full line) disregarding a constant
energy shift. For V, both the structural and the total energy have an absolute minimum at
c/a = 1, a maximum at/2, and a metastable minimum around 1.8. The latter minimum
occurs since the electrostatic energy rises sharply for latgend thus dominates over the
decreasing band energy.

Although the Ewald energy is similar for Ti and V, it is the band energy that makes
the difference. An inspection of the cubic band structures reveals that the maximum in the
band energy arises from the special position of the Fermi energy falling in a region of high
density of states from nearly degenerate d bands, which are present in fcc V and to a lesser
extent in bee Ti but not in the other structure (bcc V or fcc Ti). A lifting of this degeneracy
by the tetragonal distortion lowers the band energycfar above or below the respective
cubic value causing the local maximum in the band energy. From this analysis we conclude
that in d-electron systems the band energy is crucial in determining the structural energy and
thus thec/a dependence. This is in contrast to the sp metals or to some ionic compounds
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Figure 10. Contributions to the total energy (within an arbitrary energy shift) of Ti and V as
a function ofc/a: electrostatic (Ewald) energy (triangles, dashed—dotted curve), band energy
(circles, dotted curve) and FP LAPW total energy (solid line). Note the different energy scale
of the two systems.

(e.g. Csl), where the energy surface is largely determined by electrostatics.

This characteristic minimum/maximum behaviour, which occurs for the transition
metals, allows us to relate the tetragonal shear congtamb the energy difference\ E
taken between the saddle point and the equilibrium state. From a fit of the total energy in
lowest order ofc/a one obtains

C' = (1/V)BAE/(v2 - 1)%. (7)

Employing (7) the values of’ calculated for Ti and V are 14.2 and 121 GPa, respectively;
these compare well with the corresponding theoretical values due to (3) given in table 3,
illustrating an internal consistency. This simple model also explains the correlation between
AE andC’ discussed in [14]. We note that (7) should not be applied to the simple metals
since for them both the fcc and the bcc modification correspond to local minima in the total
energy.

The largest discrepancy in the elastic properties (table 3) is found'fof Ti. However,
for this case we can only make a limited comparison, since experimental data are for hcp
Ti while our study contains the related fcc structure. (Note that hcp Ti haa aatio that
is about 2.5% smaller than the ideal value.) The energy variation along the Bain path is
large for V soC’ cannot be obtained accurately enough from the polynomial fit (up to sixth
order inc/a) but is obtained by direct numerical calculations for snagll strains.
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Table 3. Calculated and experimental (in brackets) elastic data for Ti and V, where experimental
data are taken from [49] and volume is given per atom. For Ti the experiments correspond to
the related hcp structure which is the true ground state.

B (GPa) (' (GPa) C11(GPa) Ci2(GPa) V., (bohf)

Tifcc 130 (113) 13.5(35) 148 (160) 121 (90)  108.1 (119.3)
Vbcc 220 (157) 76 (55) 288 (230) 136 (120)  84.81 (93.4)

4. Summary

The present investigation deals with the tetragonal distortion along the Bain path and
provides a first step towards a better understanding of the energetics involved in phase
transitions. Thesd” = 0 K results are the basis for studying finite-temperature effects
which will be discussed in part Il of this paper [6].

Our calculations yield a qualitative difference in the total energy surfaces between the
simple sp metals Li, K, Rb, Ca, and Sr and the transition metals Ti and V. For the simple
metals the total energy as a function of tye ratio always has two minima at the ‘cubic’
values ofc/a. For the transition metals we also find two minima but only one of them
lies at a ‘cubic’ value of/a whereas the second (metastable) minimum is found at either
c/a > 2 (V) or ¢c/a < 1 (Ti). The second respective ‘cubic’ value ofa lies at a
saddle point in the total energy surface (a minimum aldhdut a maximum along/a).

This latter behaviour has also been found for bcc/fcc Fe [16] and for hcp/bec Co [44]
as well as for the intermetallic compounds TiAl, VAI, and CrAl [46]. This saddle point
nature found in our calculations could be the reason for the experimentally observed limit
in the thickness of epitaxially grown films [47,48]. An interesting feature is the additional
metastable minimum at larger tetragonal distortion found for Ti and V. This might challenge
experimentalists to investigate whether this new structural modification can be stabilized.
The equilibrium values for the elastic constants and volumes (tables 1-3) reproduce well the
experimental trends. The remaining deviations between theory and experiment are due to the
LDA, which systematically leads to about 10-15% too small a volume and correspondingly
to a too large bulk modulus. For the transition metals we derive a simple relation between
the stabilization energy and the shear const@ntvhich also explains the trends for the
later transition metals [14].
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Appendix

In tables A1-7 we supply the coefficierts; of the total energy surface as defined by (1).
The coefficients in (1) are chosen such that on entering the volume per atom fthehr
energy is obtained in Ryd/atom with respect to the lowest energy, which is set to zero. The
caption of each table specifies the volume apd ranges for which the fit is valid. Within

this range the accuracy of the fit is better tharmLBRyd.



The coefficients can also be obtained in electronically readable form. Please request via

fcc—bcc structural transition |

electronic mail: kschwarz@email.tuwien.ac.at.

Table Al. Lithium: Vimnax = 1360, Vimin = 1150; (¢/a)max = 1.6, (¢/a)min = 0.85.

071921389 10°

—0.881006 28x 10"

0.35836694x 101

j=0 j=1 j=2 j=3
i=0 0158607 12x 10?° —0.367 656 15x 10° 0.29403913x 1002 —0.79025003x 10°°
i=1 —0.80565888x 10? 0.18741436x 100 —0.15012831x 107! 0.40430311x 104
i= —0.16967726x 10° —0.395751 79 10! 0.31723249< 1001  —0.85517329x 104
i=3 —0.18765094x 10° 0.43900314x 100 —0.35236233x 1071 0.95130172x 104
i=4 011496454x 10° —0.26985750x 10! 0.21700068< 1001 —0.58700119x 104
i=5 —0.37013874x 10? 0.87193775< 10°  —0.70277901x 102 0.19055359% 104
i=6 048960762« 100  —0.11576569 10° 0.93560185x 103 —0.25436601x 10°°
Table A2. Potassium:Vmax = 5000, Vimin = 300.0; (¢/a)max = 1.5, (¢/a)min = 0.90.
j=0 j=1 j=2 j=3
i=0 055402225« 10° —0.32080851x 102 0.10028527x 1004  —0.10328196x 10—7
i=1 —0.32958023x 10t 0.22208274x 1001  —0.64693638x 104 0.616 164 25x 10~/
i=2 0.86730322« 100  —0.61240493x 1071 0.16496330x 1003  —0.14589979 1076
i= —0.984 329 09x 10! 0.70922979% 1071  —0.18413982x 103 0.156 690 01x 106
i= 051289729« 100 —0.37351584x 101 0.94924605x 104 —0.78897523x 10~
i=5 —0.10092107x 10 0.73957455< 1002  —0.18533911x 104 0.15164252x 107
Table A3. Rubidium: Viax = 5700, Vinin = 4400; (¢/a)max = 1.5, (¢/a)min = 0.90.
j=0 j=1 j=2 i=3
i=0 013451140x 10? —0.91266310x 101 0.20750795x 1073 —0.15504550x 106
i=1 —059587052 10? 0.405 089 25x 10° —0.92003870x 1073 0.686 08758« 10~°
i=2 010610828« 10° —0.720003 94x 10° 0.16289054x 1002  —0.120985 16x 10°°
i=3 —0.93417247x 107 0.632 702 81x 10° —0.142626 32< 1072 0.105532 44x 10°°
i=4 040667095« 10? —0.274908 74x 10° 0.61741832< 1073 —0.45535467x 1076
i=5 —0.70019196x 10! 0.47243523x 1001 —0.10577653x 1073 0.777 467 18x 10~/
Table A4. Calcium: Vinax = 2700, Vimin = 2350; (¢/a)max = 1.6, (¢/a)min = 0.80.
j=0 j=1 j=2 j=3
i=0 013716868« 10° —0.16863304x 10? 0.68815654x 1001  —0.93092818x 104
i= —0.767 978 44x 10 0.94359009x 10?  —0.384 838 96x 1(° 0.52041483x 1073
i=2 017646440x 10° —0.21667512« 10° 0.88316950x 10° —0.11938369x 102
i=3 —0.21291078x 10° 0.26125895x 103  —0.106 428 74x 10t 0.14381354x 1072
i=4 0.14226099x 10° —0.17445871x 10° 0.71031352x 1P —0.95949348« 103
i=5 —0.49923946x 10 0.61187746x 10?2  —0.249 005 63x 10° 0.33625068x 1073
i

—0.48378661x 104
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Table A5. Strontium: Vimax = 380.0, Vimin = 290.0; (¢/a)max = 1.6, (¢/a@)min = 0.80.
j=0 ji=1 j=2 j=3
i=0 —0.37365420x 107 0.31547546x 10° —0.87336372x 1073 0.806 66387x 10°°
i=1 017923616x 10° —0.149903 94x 10t 0.41392428< 1002  —0.38267534x 10°°
i=2 —0.34275267x 10° 0.283866 73x 10t —0.78154305x 1072 0.72331378x 10°°
i= 033711442« 10° —0.27605385x 10! 0.75690412x 1002  —0.70071572x 10°°
i= —0.17897088x 10° 0.144500 76x 10* —0.39381896x 1072 0.36431830x 10°°
i=5 048257275< 10 —0.38220059 10° 0.10318878x 1002  —0.95233587x 1076
i=6 —0.50902307x 10 0.39147857x 1001 —0.103997 86x 103 0.954 486 66x 107
Table A6. Titanium: Vmax = 117.0, Viin = 100.0; (¢/a)max = 1.6, (¢/a)min = 0.80.
j=0 j=1 j=2 j=3
i=0 094294428« 10°  —0.250452 46x 10? 0.219807 90x 10° —0.63497240x 103
i=1 —0.49683358« 10* 0.13195428< 10° —0.11578334x 10t 0.334 409 60x 102
i= 010847157 10° —0.28807878x 10° 0.252 73758« 10t —0.729 945 94x 102
i=3 —0.12541368x 10° 0.33309273x 103 —0.292229 96x 10! 0.84417356x 102
i=4 0.80942890x 10  —0.21500592« 10° 0.18865052x 10t —0.545157 19x 102
i=5 —0.27632806x 10* 0.73411203x 10?  —0.64424201x 1(° 0.186 25882« 1072
i=6 038962843« 10° —0.103528 28x 1(? 0.90874819< 1001  —0.26286988x 103
Table A7. Vanadium: Vimax = 93.0, Vimin = 77.5; (¢/@)max = 1.85, (¢/a)min = 0.80.
j=0 j=1 j=2 j=3
i=0 061554976x 10° —0.22317117x 1% 0.26458330x 10° —0.10360853x 102
i=1 —0.28709426x 10* 0.10439354x 10° —0.123897 12« 10 0.48532419x 1072
i=2 055038954x 10  —0.20051452« 10° 0.23807111x 10* —0.93236356x 102
i=3 —0.55398481x 10* 0.20206478x 108  —0.23992251x 10 0.93921062x 1072
i= 0.30904669x 10 —0.11277129% 10® 0.133854 35x 10t —0.52364360x 102
i=5 —0.90680320x 10° 0.33078147x 10? —0.39234202« 1P 0.153 347 60x 102
i=6 010942492« 10°  —0.39874706x 10! 0.47245149< 1001 —0.18445028x 103
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