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Abstract. Employing a high-precision band structure method (FP LAPW—full potential
linearized augmented plane wave) we calculate the total energy variation along the tetragonal
distortion path connecting the body centred cubic (bcc) and the face centred cubic (fcc) structures.
The total energy along this Bain transformation is calculated, varyingc/a and volume, providing
a first-principles energy surface which has two minima as a function ofc/a. These are shallow
and occur for the sp metals at the two cubic structures, while Ti (V) has a minimum at fcc
(bcc) but a saddle point (i.e. a minimum in volume and a maximum with respect toc/a) at
the other cubic structure. These features can be analysed in terms of an interplay between the
Madelung contribution and the band energies. Our total energy results allow us to calculate the
elastic constantsC11 andC12 and to study the influence of pressure on the phase stability. These
energy surfaces will be used in part II of this paper to investigate finite-temperature effects by
mapping them to a Landau–Ginzburg expansion.

1. Introduction

Martensitic phase transitions (MPTs) have interested scientists for more than a century
leading to an enormous amount of literature, which we do not attempt to summarize here,
but we notice that many open questions remain. Although metallurgists have developed
a large number of technologically important applications (e.g. shape memory alloys) and
know well how to make use of MPTs, the theoretical and fundamental understanding of this
phenomenon is still far from being complete. In contrast to diffusive phase transitions an
MPT is a collective phenomenon where a crystal undergoes a first-order transition from an
austenitic (high-temperature) modification to a martensitic (low-temperature) structure with
a hysteretic behaviour typical for this phase transition. The width of the hysteresis1T , the
discontinuity in the specific heat at constant pressure1Cp, and the volume change1V/V

are found to be characteristic quantities to distinguish between various types of martensite.
Around the MPT one usually observes a softening of some elastic constants together with
a large elastic anisotropy. In some systems martensitic precursor effects appear as local
distortions leading to the well known ‘tweed structures’.

The development of theoretical models for the MPT was pioneered by Cochran [1] and
Anderson [2] who independently formulated the soft-mode model according to which the
effective frequency of one phonon branch becomes zero at a temperatureT0, triggering the
phase transition, but only very few systems show this behaviour [3, 4]. Krumhansl and
Gooding [5] proposed a model based on anharmonicities in the order parameter (see part II
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Figure 1. A representation of the fcc and bcc lattices assuming a bct (body centred tetragonal)
cell which allows a continuous (Bain) transformation between them.

[6] of this paper) while Vul and Harmon [7] discussed a fluctuationless mechanism where
the MPT is triggered by defects in the crystal structure. A fairly complete overview on
martensitic phenomena can be found in [8].

If a crystal undergoes a transition from one structure into another, individual atoms in
the unit cell or complete atomic planes in the whole crystal must move to new positions
in an orderly fashion. Out of the multitude of possible geometries for such a transition
between the body centred cubic (bcc) and the face centred cubic (fcc) crystal structure the
Bain transformation is by far the simplest. It has been known since 1924 when E C Bain [9]
described the MPT by a continuous displacement of one or more atoms per unit cell. From
his work on quenched steel he found an orientational relationship between the austenitic and
the martensitic phase, namely that the [001] plane of both the bcc and fcc structure remains
unchanged during the transition. Bain described this transition between the bcc and fcc
structure via a tetragonal distortion shown in figure 1. Both the fcc and bcc lattice can be
described as special case of a body centred tetragonal (bct) unit cell. In the fcc casea and
b are equal and the lattice vectorc has the lengtha

√
2 while in the bcc case all three lattice

vectors have equal lengtha′. The Bain transformation between the fcc and the bcc lattice is
thus described by the continuous change of a single variable, namely thec/a ratio, so that
c/a = √

2 refers to the fcc andc/a = 1 to the bcc structure. It should be noted that this
Bain transformation is just one of 24 possible paths (given the existence of a habit plane)
between these two structures and that other, usually more complicated, transformations can
occur and have been found experimentally.

We have made a systematic investigation of the fcc↔ bcc transition along the Bain
path which is sufficiently simple to make computations feasible but should lead to a basic
understanding of MPT. This study is undertaken for the simple metals Li, K, Rb, Ca and
Sr and for the early transition elements Ti and V. In our study of the alkalines we omitted
Na, since already several theoretical investigations are available (see e.g. [10], [11] and
references therein). In this paper we describe the band structure results which are valid
at T = 0 K but can be mapped to a Landau expansion and thus provide a basis for a
finite-temperature (mean field) study which is contained in part II [6].

2. Computational details

We use quantum mechanical calculations to obtain the total energy atT = 0 on a first-
principles basis. We compute the electronic band structure within the density functional
theory and the local density approximation (LDA) by means of the full-potential linearized-
augmented-plane-wave (FP LAPW) method employing the WIEN95 code developed by
Blaha et al [12]. Exchange and correlation effects are treated by LDA using the
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parametrization by Hedin and Lundqvist [13]. It will be shown below that for some systems
the energy differences are only fractions of 1 mRyd, and therefore the calculations were
carried out for a sufficiently large number ofk-points in the irreducible wedge of the
bct Brillouin zone (between 540 and 1800k-points, depending on the system). Ak-grid
that is about uniform forc/a = 1.2 was kept fixed throughout the calculations in order
to avoid discontinuities in the total energy that could be caused if the number of grid
points were changed discontinuously as a function of cell dimensions. Furthermore very
high precision in the total energy results is necessary and was achieved by using a plane-
wave cut-offRKmax = 9 (for definitions see [12]) leading to about 140 (plane-wave) basis
functions. Inside the atomic spheres the potential and charge density are expanded in crystal
harmonics up toL = 6; in the interstitial region a Fourier series with 150 stars ofK is
used. In each self-consistency cycle the core states are treated fully relativistically and
the Hamiltonian for the valence (and semicore) states is calculated in a scalar relativistic
version (without spin–orbit corrections). The total energy (atT = 0) is computed as a
function of volumeV and c/a (Bain variable), the two most important parameters. For
each of the seven systems we performed calculations for about eight different volumes
and 10 differentc/a ratios. From this series of self-consistent FP LAPW calculations we
derive total energy surfacesE(V, c/a) in the volume–Bain variable space. In contrast to
earlier investigations [10, 14] which concentrated on thec/a variation of the total energy,
we included the volume as another crucial parameter for the thermodynamic phase stability.
It will be shown (subsection 3.4) that the volume change calculated atT = 0 K can be
related to the slope in theP, T phase diagram. We would like to mention that this part
of our work is similar to previous investigations by Chenet al [15] for the hcp↔ bcc
transition in barium and the reader should be aware that other quantum mechanical models
have been applied to this problem by various authors [14–17].

By fitting the FP LAPW total energies to a polynomial, we obtain an analytic expression
for the energy surfaceE(c/a, V ) given by

E(c/a, V ) =
∑
i=0,n

∑
j=0,m

Aij (c/a)iV j . (1)

To monitor the convergence of the fit we performed a least-squares procedure using
orthogonal Chebychev polynomials from which the polynomial acc. to (1) was derived.
The fit coefficientsAij for all metals studied are given in the appendix.

The analytic expression for the total energy (1) allows us to calculate several
characteristic quantities such as the bulk modulus

B = V ∂2E(c/a, V )/∂V 2 = (
C11 + 2C12

)/
3 c/a constant (2)

or the tetragonal shear constant

C ′ = (1/V )∂2E(c/a, V )/∂(c/a)2 = (
C11 + C12

)/
2 V constant. (3)

The definitions of the elastic constantsC11 andC12 are self-evident and it is straightforward
to calculate the equilibrium values of volumeV and Bain variablec/a. Formally the
expansion given in (1) is equivalent to the one for the soft-mode model proposed by Clapp
[3] who explains the occurrence of MPTs by nucleation due to local strains.

3. Total energy surfaces as a function ofc/a and V

In the following section we present the result of our band structure calculations and show
for each system investigated the total energy surface. In the present study we find either
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Figure 2. Madelung constantαM as a function ofc/a for a bct lattice.

fcc or bcc as the most stable modification which is associated with a local energy minimum
with respect toV andc/a. However, this does not need to be the absolute minimum, since
other phases, which might lead to an even lower total energy, are not investigated. At first
it seems surprising that (for each volume) the energy appears to be an extremum (either
minimum or maximum) at the ‘cubic’ values ofc/a (i.e. c/a = 1 for bcc, c/a = √

2
for fcc). This extremal condition is in fact a general feature of cubic systems and can be
derived from the elastic energy assuming the volume remains constant [18]. Therefore this
observation suggests that the lattice geometry plays an important role. If one varies thec/a

ratio for a tetragonal unit cell as shown in figure 1 the number of next-nearest neighbours
becomes a relative maximum forc/a = 1 (bcc; 8 n.n.) and an absolute maximum for
c/a = √

2 (fcc; 12 n.n.) while for all other values ofc/a the number of n.n. is below eight.
It has been shown that the total energy can be decomposed into terms which depend

only on volume, and two contributions, namely the band energy (the sum over the occupied
states) and the electrostatic Ewald energy, which depend on thec/a ratio [19]. Therefore
the latter two terms govern the total energy for constant volume. The electrostatic Ewald
energyEEw is given by

EEw = (
1.8 − αM

)(
q2/�2

MT

)
�2

WS/RWS (4)

where �WS and �MT are the volume of the Wigner–Seitz and the muffin-tin sphere,
respectively;RWS is the Wigner–Seitz radius andq is the charge inside the Wigner–Seitz
sphere (equal to the nuclear charge for monoatomic systems) minus the charge inside the
(smaller) non-overlapping muffin-tin sphere. For metallic systems the variation ofEEw

along the Bain path is governed by thec/a dependence ofαM , since�2
WS/RWS is constant

for fixed volume andq/�MT is nearly constant for slowly varying electron densities. In
fact for vanadium evenq varies little, between 1.432 and 1.462 electrons in the range of
0.8 < c/a < 1.6.

The functionαM(c/a) shows (figure 2) a double-well structure with two minima, one
at c/a = 1 (bcc) and the other at

√
2 (fcc). This behaviour is due to the self-reciprocity

of the bcc and fcc structure as discussed in the earlier literature [20]. Forc/a < 0.9 and
c/a > 1.7, the Ewald energy rises sharply, since electrostatics makes such highly distorted
bct lattices very unfavourable. It should be noted, however, that in ionic systems, whereq

is no longer nearly constant,EEw can (in contrast to metals) deviate substantially from the
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double-well behaviour ofαM . For example, it has been shown [21] that in CsI the pressure
induced tetragonal distortion is due to the electrostatic contribution to the total energy.

The band energy (sum over all occupied states) can (to a good approximation) be reduced
to the contribution from the valence electrons, since the core energies do not change for
constant volume. The band energy is given by

EB =
∫ εF

ε0

εN(ε) dε (5)

whereε0 denotes the bottom of the valence band,εF is the Fermi energy, andN(ε) is the
density of states of the valence electrons. For our metallic systemsEB contains the essential
information on bonding and thus determines the equilibrium geometry of the lattice. This
energy decomposition will be used (subsection 3.8) to analyze the total energy of titanium
and vanadium.

Below we present theT = 0 K results of our band structure calculations for each
system and discuss the related properties. For some cases we decompose the total energy
into EEw and EB in order to illustrate the well known different bonding mechanism for
simple (sp-band systems) and transition metals (d-band systems). Unless stated differently
our results are compared to the experimental phase diagrams taken from the book by Young
[22].

3.1. Lithium

The total energy surface of Li (figure 3) shows that at the equilibrium volume the close-
packed (fcc) structure is favoured over the bcc modification, although for the latter a local
minimum occurs atc/a = 1. Experimentally the structure atT = 0 is found to be close
packed, but in a hexagonal polytype (hcp or 9R [23]). It was confirmed by a previous
investigation [24] using the same band structure code [12] that the hcp structure (with ac/a

ratio slightly deviating from the ideal value of
√

(8/3)) is even more stable than the fcc. At
the equilibrium volume the energy difference between the bcc and the fcc structure is about
0.16 mRyd. Under external pressureP this energy difference is increased in favour of the
fcc structure (figure 4). The experimental phase diagram also shows that the stability range
of the fcc structure is increased under pressure, which means that the critical temperature
for the phase transition from fcc to bcc increases too (dp/dT is positive). This observation
implies that the temperature at which the MPT appears is related to theT = 0 K energy
difference between the martensitic and the austenitic phase. A careful examination of the
E(c/a) curves (figure 4) shows that the metastable minimum atc/a = 1 (for P = 0) shifts
under pressure to smaller values ofc/a and a local maximum appears atc/a = 1. For Li
this feature occurs only under pressure but it is common for the transition metal systems
(see subsection 3.8). This observation implies that under pressure the 2p states are lowered
in energy and thus form s,p hybrid bands which favour directional bonds comparable to
the early transition metals investigated. From this analogy between Li and the transition
metals, and the fact that this behaviour is not found for the heavier alkaline metals, where
the energy difference between the s and p states is too large for an effective hybridization,
we conclude that the formation of directional bonds is responsible for the local minimum
at ac/a ratio smaller than unity.

It should be noted that earlier band structure investigations based on the ASA (atomic
sphere approximation) assuming a spherically symmetric potential, e.g. within the LMTO
(linear muffin-tin orbital) method, found the bcc structure as ground state [25, 26], while FP
LAPW calculations [27] predict fcc lower than bcc and find hcp as the ground state [24] in
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Figure 3. Total energy contours of Li, K, and Rb as a function ofc/a and volume per atom.
The labels on the contour lines are in multiples of 0.025 mRyd.

Figure 4. The energy variation of Li as a function ofc/a for the equilibrium volume (108 bohr3;
full circles) and under pressure of 2 GPa (V = 95 bohr3; open circles). The two curves are
shifted arbitrarily.

agreement with pseudopotential calculations (without the ASA [28, 29]).
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3.2. Potassium

The energy surface of K (figure 3) shows two minima atc/a = 1 andc/a = √
2 with the fcc

structure being slightly more stable by about 0.02 mRyd. This result has also been obtained
by an independent APW [11] and a high-precision FP LAPW calculation [30], while other
theoretical investigations [26, 29, 31] obtained a bcc ground state. The experimental situation
is not completely clear but there is some evidence for a lattice distortion at low temperature
[32, 33] and there are indications that the fcc structure becomes more stable under pressure.

3.3. Rubidium

We find fcc as ground state (figure 3) and a very shallow minimum atc/a = 1 which is
about 0.17 mRyd above the fcc modification. Experimentally Rb is bcc at room temperature
and there is a pressure induced phase transition to the fcc structure. The low-temperature
phase diagram has not yet been completely resolved but there is again evidence for an
instability of the bcc phase at low temperature [34]. This result is supported by the slope of
the bcc/fcc phase boundary in theP, T diagram. Our calculation shows that under pressure
the fcc modification becomes progressively more stable with respect to the bcc structure
(a similar behaviour as in Li) and this is in agreement with the phase diagram, according
to which for pressures larger than≈9 GPa the fcc structure is stable up to the melting
temperature. In contrast to our result, anab initio pseudopotential investigation [35] found
bcc more stable than fcc and a transition to fcc at about 5.2 GPa. The very low value of
the shear constantC ′ (table 1), the lowest of the whole periodic table, makes the Rb lattice
very unstable against a tetragonal distortion.

Table 1. Calculated and experimental (in brackets) elastic data for Li, K, and Rb. A comparison
with experiment is only possible for the low-temperature structure; experimental data are taken
from [49] for the structure specified. The volume is given as volume per atom.

B (GPa) C′ (GPa) C11 (GPa) C12 (GPa) Vequil (bohr3)

Li fcc 15.2 (12.0) 1.3 (1.1) 16.9 (13.4) 14.3 (11.2) 127.7 (141.8)
Li bcc 15.4 1.2 17 14.7 128.1

K fcc 5.2 0.4 5.7 5.0 430.4
K bcc 5.4 (3.4) 0.6 (0.3) 6.1 (3.7) 4.9 (3.2) 428.7 (481.8)

Rb fcc 4.2 0.3 4.6 4.0 518.9
Rb bcc 4.1 (2.6) 0.3 (0.3) 4.5 (3.0) 3.8 (2.4) 519.6 (588.4)

3.4. Alkaline metals

According to our calculations all three simple metals Li, K and Rb behave similarly since
at zero pressure the fcc structure is more stable than the bcc modification. The elastic
constants are given in table 1. Since the total energy of these three metals has two minima
(a stable and a metastable one) we calculateB, C ′, C11 andC12 for both cubic structures. A
comparison with experiment, however, can only be made for the stable (low-temperature)
phase. Table 1 demonstrates that all equilibrium quantities are in fair agreement with
experiment. The bulk modulus is systematically overestimated and the equilibrium volume
is about 10–15% smaller than experiment, deviations typical within LDA calculations.

Although it has been shown for Na [36] that for small changes in volume the barrier
height separating the two phases remains fairly constant, this picture alters for larger
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pressure. The fcc stability increases for Li and Rb, while for K the opposite behaviour
is found. In the former case there is a positive slope of the phase boundary in theP, T

phase diagram between the low-temperature (fcc) and the high-temperature (bcc) phase but
in the latter case (of K) the fcc phase becomes less stable under pressure and the slope of
the phase boundary is negative. This effect can be understood from Gibbs’ phase rule for
a one-component system, where the Clausius–Clapeyron equation defines the slope of the
phase boundary:

dPT /dT = 1S/1V = (
Sbcc − Sf cc

)/(
Vbcc − Vf cc

)
. (6)

In an entropy driven phase transition the entropy of the high-temperature phase (hereSbcc)
must be larger than that of the lower-temperature phase (hereSf cc) in order to lower the
free energy at high temperatures. Therefore in the present case1S must be positive and
consequently the volume difference determines the sign of the slope [37]. By taking the
respective values from table 1 we find dPT /dT to be positive for Li and Rb but negative
for K, in complete agreement with the experimental phase diagrams. It should be noted that
this analysis holds for Na too (table 3 of [11]) where LAPW calculations predict a negative
1V leading to a negative dPT /dT in accord with experiment.

These macroscopic (thermodynamic) results discussed above must have a microscopic
origin. When one compares the electronic band structure of the four alkaline metals [11]
one notices that for Li and Rb the Fermi energyεF is located in a peak of the density of
states caused by a flat band at the surface of the first Brillouin zone, but this is not the
case for K and Na. According to Jones [38] a structural instability occurs if the Fermi
surface touches the Brillouin zone. Under pressure, the band width is increased and states
which were unoccupied at the equilibrium volume are lowered in energy and thus become
occupied, leading to a lowering ofεF , and consequentlyεF moves away from the ‘unstable’
peak position, increasing the fcc stability.

3.5. Calcium

Ca is a group II element and its ground state is fcc. Our calculation correctly predicts this
ground state (figure 5) but shows a very shallow minimum atc/a = 1. At a pressure of
about 19.5 GPa there is a transition into the bcc structure [39] which has been reproduced by
Wentzcovitch and Krakauer using FP LAPW calculations [17]. They studied an interesting
alternative path with respect to the Bain transformation and assumed a mechanism derived
from Burgers’ suggestion [40] for the hcp↔ bcc transformation. Since there exists a simple
(but approximate) geometrical relationship between Bain’s and Burgers’ transformations, it
is not surprising that the two paths hardly differ in total energy. In figure 6 we show the
c/a dependence of the total energy at different volumes (pressures). It can be clearly seen
that the fcc minimum disappears and (atVT ≈ 150 au) the system undergoes a pressure
induced discontinuous phase transition to the bcc structure. Our results are in agreement
with both the calculations mentioned above [17] and the experimental results cited therein.
The slope of the phase boundary derived from (6) agrees in sign with experiment.

The critical pressure found for the fcc↔ bcc transition is about 20 GPa and is calculated
directly from the total energy surface. It should however be noted that the critical pressure
for the phase transition can no longer be calculated from the volumesVeq andVT and the
fcc bulk modulusB, since the harmonic approximation assumed in the calculation ofB no
longer holds for a volume ratioVT /Veq ≈ 0.6.
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Figure 5. Total energy contours of Ca and Sr as a function ofc/a and volume per atom. The
labels on the contour lines are in multiples of 0.1 mRyd.

Figure 6. The energy variation of Ca as a function ofc/a for three volumes:Veq = 256.9 bohr3

(full circles), V = 210 bohr3 (open circles), andV = 150 bohr3 (triangles). The three curves
are shifted arbitrarily.

3.6. Strontium

According to the available experimental data, our calculation incorrectly predicts bcc as
ground state (figure 5) but the energy difference between the bcc and fcc modification is
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Figure 7. The energy variation of Sr as a function ofc/a for volumes:Veq = 324 bohr3 (full
circles), V = 360 bohr3 (diamonds),V = 290 bohr3 (triangles), andV = 210 bohr3 (open
circles). The four curves are shifted arbitrarily.

below 0.05 mRyd (<7.5 K) in favour of bcc. We even tried to improve the basis set of
our band structure calculation and performed additional band calculations for Sr where we
treated the low-lying 3p (semicore) states by local orbitals [41], a procedure that guarantees
a proper orthogonalization of the valence states to the lower-lying semicore states. However,
this new set of calculations did not change the original result. Experimentally the ground
state at room temperature is found to be fcc but the bcc structure must be very close since
already 3.5 GPa are enough to drive Sr to the bcc phase. If we assume that our fcc minimum
would be the ground state, we find a pressure induced transition to the bcc state at about
4 GPa (figure 7), which means that regardless of the actual ground state (bcc or fcc) the
energy barrier is described properly. Earlier LMTO calculations gave essentially the same
results [42].

3.7. Summary of the simple metal results

The equilibrium data for Ca and Sr are summarized in table 2 which shows that our results
are as close to experimental values as one can expect within the LDA. All five simple
metals investigated have the same characteristic double-well structure where both bcc and
fcc modifications are found to be at a (relative) minimum of the total energy. The mutual
stabilization energies are small, which suggests that the major contribution to the stability
stems from the electrostatic Ewald energyEEw as discussed above. A decomposition of
the total energy intoEEw and the band energyEB (5) shows thatEB varies much less as
a function of c/a than EEw since the valence electrons behave as an ‘electron gas’ and
thus depend more on volume than on changes of the crystal structure. Consequently the
stabilization energies are expected to be small, in contrast to those of transition metals,
which will be discussed below.

3.8. Titanium and vanadium

Ti exhibits a complex phase diagram with an hcp ground state followed at 1155 K by the
bcc structure which remains up to the melting temperature at 1943 K. Under pressure (and
below 900 K) experiment finds a transition from hcp to the hexagonalω-phase. A recent
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Table 2. Calculated and experimental (in brackets) elastic data for Ca and Sr. A comparison
with experiment is only possible for the low-temperature structure; experimental data are taken
from [49]. The volume is given as volume per atom.

B (GPa) C′ (GPa) C11 (GPa) C12 (GPa) Vequil (bohr3)

Ca fcc 19.2 (18.3) 2.9 (2.8) 23.1 (23.1) 17.2 (16.0) 256.9 (294.7)
Ca bcc 20.1 2.7 23.7 18.3 253.9

Sr fcc 16.5 (12.0) 1.8 (2.5) 18.9 (15.3) 15.3 (10.3) 324.0 (380.5)
Sr bcc 16.0 3.5 20.6 13.6 319.6

Figure 8. Total energy contours of Ti as a function ofc/a and volume per atom. The energy
difference between adjacent contour lines is 0.25 mRyd. The bottom panel shows a section of
the energy surface atVequil .

band structure investigation [43] predicts a further transition to the bcc structure at a pressure
of 57 GPa. Ti does not exist in the fcc phase but since the hcp and the fcc structure are very
similar (same nearest-neighbour coordination) we expect that the hcp phase is only slightly
lower than the fcc modification. We find fcc already lower in energy than bcc (figure 8)
but there is a qualitative difference from the simple metals, because the bcc modification
(c/a = 1) now appears at a saddle point (a minimum with respect toV , but a maximum
with respect toc/a). The energy difference between the fcc and the bcc state is about
3 mRyd which is considerably larger than for the simple metals discussed above. We find
an additional metastable minimum atc/a ≈ 0.85 apparent from the bottom panel of figure 8
which represents a section through the energy surface taken atVeq . This peculiar behaviour
requires an explanation, which is attempted below.

The ground state of vanadium (figure 9) is found to be bcc (c/a = 1) in agreement
with experiment. The fcc phase corresponds to a saddle point atc/a = √

2 at an energy
about 20 mRyd above the bcc ground state followed by a metastable minimum at a large
bct distortion (with c/a = 1.8). The section through the energy surface for constant
volume Vequil (the bottom panel of figure 9) shows that the maximum (saddle point) and
the minimum position are interchanged between V and Ti, but both appear at the cubicc/a

values.
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Figure 9. Total energy contours of V as a function ofc/a and volume per atom. The energy
difference between adjacent contour lines is 1.0 mRyd. The bottom panel shows a section of
the energy surface atVequil .

Both systems have the following characteristics in common that distinguish them from
the simple metals. The equilibrium modification must and does lie in an absolute minimum
of the total energy but there is always a second metastable minimum with a rather large
tetragonal distortion at ac/a ratio of about 0.85 and 1.8, respectively. Although a similar
behaviour has been found for the series of the 4d elements [14], as well as for bcc Fe
[16], Co [44], and Mn [45] these features have not yet been explained and thus require an
interpretation.

As discussed above (see the beginning of section 3) the total energy at constant volume
contains two major contributions, namely the band energyEB and the electrostatic Ewald
energyEEw. In order to determine which of them dominates the structural stability, we
show these two contributions in figure 10 (note the different energy scale for Ti and V). Let
us first discuss V for which the band energy (circles) has a maximum atc/a = √

2, while
the electrostatic Ewald energy (triangles) shows a double-well structure with minima for
bcc and fcc (cf figure 2). Adding the band energy to the Ewald energy yields the structural
energy which agrees well with the FP LAPW total energy (full line) disregarding a constant
energy shift. For V, both the structural and the total energy have an absolute minimum at
c/a = 1, a maximum at

√
2, and a metastable minimum around 1.8. The latter minimum

occurs since the electrostatic energy rises sharply for largec/a and thus dominates over the
decreasing band energy.

Although the Ewald energy is similar for Ti and V, it is the band energy that makes
the difference. An inspection of the cubic band structures reveals that the maximum in the
band energy arises from the special position of the Fermi energy falling in a region of high
density of states from nearly degenerate d bands, which are present in fcc V and to a lesser
extent in bcc Ti but not in the other structure (bcc V or fcc Ti). A lifting of this degeneracy
by the tetragonal distortion lowers the band energy forc/a above or below the respective
cubic value causing the local maximum in the band energy. From this analysis we conclude
that in d-electron systems the band energy is crucial in determining the structural energy and
thus thec/a dependence. This is in contrast to the sp metals or to some ionic compounds



fcc–bcc structural transition I 811

Figure 10. Contributions to the total energy (within an arbitrary energy shift) of Ti and V as
a function ofc/a: electrostatic (Ewald) energy (triangles, dashed–dotted curve), band energy
(circles, dotted curve) and FP LAPW total energy (solid line). Note the different energy scale
of the two systems.

(e.g. CsI), where the energy surface is largely determined by electrostatics.
This characteristic minimum/maximum behaviour, which occurs for the transition

metals, allows us to relate the tetragonal shear constantC ′ to the energy difference1E

taken between the saddle point and the equilibrium state. From a fit of the total energy in
lowest order ofc/a one obtains

C ′ ∼= (1/V )61E/(
√

2 − 1)2. (7)

Employing (7) the values ofC ′ calculated for Ti and V are 14.2 and 121 GPa, respectively;
these compare well with the corresponding theoretical values due to (3) given in table 3,
illustrating an internal consistency. This simple model also explains the correlation between
1E andC ′ discussed in [14]. We note that (7) should not be applied to the simple metals
since for them both the fcc and the bcc modification correspond to local minima in the total
energy.

The largest discrepancy in the elastic properties (table 3) is found forC ′ of Ti. However,
for this case we can only make a limited comparison, since experimental data are for hcp
Ti while our study contains the related fcc structure. (Note that hcp Ti has ac/a ratio that
is about 2.5% smaller than the ideal value.) The energy variation along the Bain path is
large for V soC ′ cannot be obtained accurately enough from the polynomial fit (up to sixth
order inc/a) but is obtained by direct numerical calculations for smallc/a strains.
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Table 3. Calculated and experimental (in brackets) elastic data for Ti and V, where experimental
data are taken from [49] and volume is given per atom. For Ti the experiments correspond to
the related hcp structure which is the true ground state.

B (GPa) C′ (GPa) C11 (GPa) C12 (GPa) Veq (bohr3)

Ti fcc 130 (113) 13.5 (35) 148 (160) 121 (90) 108.1 (119.3)
V bcc 220 (157) 76 (55) 288 (230) 136 (120) 84.81 (93.4)

4. Summary

The present investigation deals with the tetragonal distortion along the Bain path and
provides a first step towards a better understanding of the energetics involved in phase
transitions. TheseT = 0 K results are the basis for studying finite-temperature effects
which will be discussed in part II of this paper [6].

Our calculations yield a qualitative difference in the total energy surfaces between the
simple sp metals Li, K, Rb, Ca, and Sr and the transition metals Ti and V. For the simple
metals the total energy as a function of thec/a ratio always has two minima at the ‘cubic’
values ofc/a. For the transition metals we also find two minima but only one of them
lies at a ‘cubic’ value ofc/a whereas the second (metastable) minimum is found at either
c/a >

√
2 (V) or c/a < 1 (Ti). The second respective ‘cubic’ value ofc/a lies at a

saddle point in the total energy surface (a minimum alongV , but a maximum alongc/a).
This latter behaviour has also been found for bcc/fcc Fe [16] and for hcp/bcc Co [44]
as well as for the intermetallic compounds TiAl, VAl, and CrAl [46]. This saddle point
nature found in our calculations could be the reason for the experimentally observed limit
in the thickness of epitaxially grown films [47, 48]. An interesting feature is the additional
metastable minimum at larger tetragonal distortion found for Ti and V. This might challenge
experimentalists to investigate whether this new structural modification can be stabilized.
The equilibrium values for the elastic constants and volumes (tables 1–3) reproduce well the
experimental trends. The remaining deviations between theory and experiment are due to the
LDA, which systematically leads to about 10–15% too small a volume and correspondingly
to a too large bulk modulus. For the transition metals we derive a simple relation between
the stabilization energy and the shear constantC ′ which also explains the trends for the
later transition metals [14].
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Appendix

In tables A1–7 we supply the coefficientsAij of the total energy surface as defined by (1).
The coefficients in (1) are chosen such that on entering the volume per atom in bohr3 the
energy is obtained in Ryd/atom with respect to the lowest energy, which is set to zero. The
caption of each table specifies the volume andc/a ranges for which the fit is valid. Within
this range the accuracy of the fit is better than 10−5 Ryd.
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The coefficients can also be obtained in electronically readable form. Please request via
electronic mail: kschwarz@email.tuwien.ac.at.

Table A1. Lithium: Vmax = 136.0, Vmin = 115.0; (c/a)max = 1.6, (c/a)min = 0.85.

j = 0 j = 1 j = 2 j = 3

i = 0 0.158 607 12× 102 −0.367 656 15× 100 0.294 039 13× 10−2 −0.790 250 03× 10−5

i = 1 −0.805 658 88× 102 0.187 414 36× 101 −0.150 128 31× 10−1 0.404 303 11× 10−4

i = 2 −0.169 677 26× 103 −0.395 751 79× 101 0.317 232 49× 10−1 −0.855 173 29× 10−4

i = 3 −0.187 650 94× 103 0.439 003 14× 101 −0.352 362 33× 10−1 0.951 301 72× 10−4

i = 4 0.114 964 54× 103 −0.269 857 50× 101 0.217 000 68× 10−1 −0.587 001 19× 10−4

i = 5 −0.370 138 74× 102 0.871 937 75× 100 −0.702 779 01× 10−2 0.190 553 59× 10−4

i = 6 0.489 607 62× 101 −0.115 765 69× 100 0.935 601 85× 10−3 −0.254 366 01× 10−5

Table A2. Potassium:Vmax = 500.0, Vmin = 300.0; (c/a)max = 1.5, (c/a)min = 0.90.

j = 0 j = 1 j = 2 j = 3

i = 0 0.554 022 25× 100 −0.320 808 51× 10−2 0.100 285 27× 10−4 −0.103 281 96× 10−7
i = 1 −0.329 580 23× 101 0.222 082 74× 10−1 −0.646 936 38× 10−4 0.616 164 25× 10−7

i = 2 0.867 303 22× 101 −0.612 404 93× 10−1 0.164 963 30× 10−3 −0.145 899 79× 10−6

i = 3 −0.984 329 09× 101 0.709 229 79× 10−1 −0.184 139 82× 10−3 0.156 690 01× 10−6

i = 4 0.512 897 29× 101 −0.373 515 84× 10−1 0.949 246 05× 10−4 −0.788 975 23× 10−7

i = 5 −0.100 921 07× 101 0.739 574 55× 10−2 −0.185 339 11× 10−4 0.151 642 52× 10−7

Table A3. Rubidium: Vmax = 570.0, Vmin = 440.0; (c/a)max = 1.5, (c/a)min = 0.90.

j = 0 j = 1 j = 2 j = 3

i = 0 0.134 511 40× 102 −0.912 663 10× 10−1 0.207 507 95× 10−3 −0.155 045 50× 10−6

i = 1 −0.595 870 52× 102 0.405 089 25× 100 −0.920 038 70× 10−3 0.686 087 58× 10−6

i = 2 0.106 108 28× 103 −0.720 003 94× 100 0.162 890 54× 10−2 −0.120 985 16× 10−5

i = 3 −0.934 172 47× 102 0.632 702 81× 100 −0.142 626 32× 10−2 0.105 532 44× 10−5

i = 4 0.406 670 95× 102 −0.274 908 74× 100 0.617 418 32× 10−3 −0.455 354 67× 10−6

i = 5 −0.700 191 96× 101 0.472 435 23× 10−1 −0.105 776 53× 10−3 0.777 467 18× 10−7

Table A4. Calcium: Vmax = 270.0, Vmin = 235.0; (c/a)max = 1.6, (c/a)min = 0.80.

j = 0 j = 1 j = 2 j = 3

i = 0 0.137 168 68× 103 −0.168 633 04× 102 0.688 156 54× 10−1 −0.930 928 18× 10−4

i = 1 −0.767 978 44× 104 0.943 590 09× 102 −0.384 838 96× 100 0.520 414 83× 10−3

i = 2 0.176 464 40× 105 −0.216 675 12× 103 0.883 169 50× 100 −0.119 383 69× 10−2

i = 3 −0.212 910 78× 105 0.261 258 95× 103 −0.106 428 74× 101 0.143 813 54× 10−2

i = 4 0.142 260 99× 105 −0.174 458 71× 103 0.710 313 52× 100 −0.959 493 48× 10−3

i = 5 −0.499 239 46× 104 0.611 877 46× 102 −0.249 005 63× 100 0.336 250 68× 10−3

i = 6 0.719 213 89× 103 −0.881 006 28× 101 0.358 366 94× 10−1 −0.483 786 61× 10−4
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Table A5. Strontium: Vmax = 380.0, Vmin = 290.0; (c/a)max = 1.6, (c/a)min = 0.80.

j = 0 j = 1 j = 2 j = 3

i = 0 −0.373 654 20× 102 0.315 475 46× 100 −0.873 363 72× 10−3 0.806 663 87× 10−6

i = 1 0.179 236 16× 103 −0.149 903 94× 101 0.413 924 28× 10−2 −0.382 675 34× 10−5

i = 2 −0.342 752 67× 103 0.283 866 73× 101 −0.781 543 05× 10−2 0.723 313 78× 10−5

i = 3 0.337 114 42× 103 −0.276 053 85× 101 0.756 904 12× 10−2 −0.700 715 72× 10−5

i = 4 −0.178 970 88× 103 0.144 500 76× 101 −0.393 818 96× 10−2 0.364 318 30× 10−5

i = 5 0.482 572 75× 102 −0.382 200 59× 100 0.103 188 78× 10−2 −0.952 335 87× 10−6

i = 6 −0.509 023 07× 101 0.391 478 57× 10−1 −0.103 997 86× 10−3 0.954 486 66× 10−7

Table A6. Titanium: Vmax = 117.0, Vmin = 100.0; (c/a)max = 1.6, (c/a)min = 0.80.

j = 0 j = 1 j = 2 j = 3

i = 0 0.942 944 28× 103 −0.250 452 46× 102 0.219 807 90× 100 −0.634 972 40× 10−3

i = 1 −0.496 833 58× 104 0.131 954 28× 103 −0.115 783 34× 101 0.334 409 60× 10−2

i = 2 0.108 471 57× 105 −0.288 078 78× 103 0.252 737 58× 101 −0.729 945 94× 10−2

i = 3 −0.125 413 68× 105 0.333 092 73× 103 −0.292 229 96× 101 0.844 173 56× 10−2

i = 4 0.809 428 90× 104 −0.215 005 92× 103 0.188 650 52× 101 −0.545 157 19× 10−2

i = 5 −0.276 328 06× 104 0.734 112 03× 102 −0.644 242 01× 100 0.186 258 82× 10−2

i = 6 0.389 628 43× 103 −0.103 528 28× 102 0.908 748 19× 10−1 −0.262 869 88× 10−3

Table A7. Vanadium:Vmax = 93.0, Vmin = 77.5; (c/a)max = 1.85, (c/a)min = 0.80.

j = 0 j = 1 j = 2 j = 3

i = 0 0.615 549 76× 103 −0.223 171 17× 102 0.264 583 30× 100 −0.103 608 53× 10−2

i = 1 −0.287 094 26× 104 0.104 393 54× 103 −0.123 897 12× 101 0.485 324 19× 10−2

i = 2 0.550 389 54× 104 −0.200 514 52× 103 0.238 071 11× 101 −0.932 363 56× 10−2

i = 3 −0.553 984 81× 104 0.202 064 78× 103 −0.239 922 51× 101 0.939 210 62× 10−2

i = 4 0.309 046 69× 104 −0.112 771 29× 103 0.133 854 35× 101 −0.523 643 60× 10−2

i = 5 −0.906 803 20× 103 0.330 781 47× 102 −0.392 342 02× 100 0.153 347 60× 10−2

i = 6 0.109 424 92× 103 −0.398 747 06× 101 0.472 451 49× 10−1 −0.184 450 28× 10−3
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